DO: I will be able to explain the impact of forces on the world and the impact of forces on each other.

EQ's:
1. What is force?
2. How is force described?
3. What forces do you observe in everyday life?
Force and Motion

Balanced and Unbalanced Forces
Velocity and Acceleration
Motion

• What is motion?
 • A change in the position of an object over time.

• How do you know something is in motion or has moved?
 • You use a reference point!
 • A stationary (not moving) object such as a tree, street sign, or a line on the road.
• What causes an object to move?
 • A FORCE!
 • ALL motion is due to forces acting on objects!

• What is a force?
 • A push or a pull
Can more than one force act on an object at the same time?

The total combination of the forces (opposites - and same direction +) acting on an object is called **NET FORCE**.

YES!

Example: Gravity is pulling you down to Earth, the ground is supporting you, and your legs moving you forward as you run during Physical Education.
Balanced Forces

• A balanced force is one in which the net force equals ZERO.
• Do you think there will be any motion?
 • NO!
• Examples:

- 400 Newtons
- 400 Newtons
- 50 N
- 50 N
Unbalanced Forces

• An unbalanced force is one in which the net force is greater than zero. > 0

• Do you think there will be any motion?
 • YES!

• Examples:

 The air resistance will negate 2 N of gravitational force which will leave 48N of net force pushing the sky divers to the ground.

 The force produced by the blue team is greater than that of the purple team. So the net force is 15N that would tip the ropes direction to the right.
Only an **unbalanced** force can change the motion of an object.

- **Example:** Your dog can cause you to move if he pulls with enough force.
 - His force is greater than the force you’re using to stay in place.
What would happen if an unbalanced force acted on an object that's already in motion?

• It will change the speed or direction of the object.

• Example: Your little brother is riding his tricycle. You run up behind him and give him a push.
 • Your force adds to the existing force causing him to speed up.
Unbalanced forces can act in the same direction.

• Example: You’re pushing a cabinet across the room with a force of 15 N. You’re friend is pulling with a force of 10 N.

• What is the NET FORCE?

• What direction is the cabinet moving?

When two forces move in the same direction the forces are combined. Here the net force is 25N.
Unbalanced forces can act in opposite directions.

• Example: Two dogs are tugging on a rope. One dog pulls with a force of 20N and the other pulls with a force of 25N.
• What is the NET FORCE?
• What direction is the rope moving?
Answer 1 of the EQ’s:
1. What is force?
2. How is force described?
3. What forces do you observe in everyday life?
Motion and Force

Motion: A change in the position of an object over time. A reference point enables a person to determine that something has moved or changed position.

Remember Benny the beaver, we knew he moved because he got closer to our tree, the reference point.

ALL motion is caused by a force or forces.

Force: A force is a push or pull on an object causing a change in speed or direction.

NET FORCE: The total combination of the forces acting on an object is called **NET FORCE**.

Opposites forces will take away from each other (counteract their force due to opposing direction); the larger forces newton's are always above the smaller forces newton's 50N - 40N = 10 N net force. Forces moving in the same direction will be added together; 50N + 40 N = 90N net force
Balanced and Unbalanced Forces

A Balanced Force: is a force in which the net force equals ZERO and there is NO MOTION.

300N of force opposing (-) 300N of force = 0N
A BALANCED force with NO MOTION

An Unbalanced Force: is a force in which the net force is GREATER than (>) Zero causing motion.

400N of force opposing (-) 300N of force = 100N an UNBALANCED force with MOTION going in the direction of the greater force in this case to the left or toward team A.
Special information to remember about Unbalanced Forces

Unbalanced forces can act in the same direction. IF the forces are combining their efforts the Newton Force is combined (+) as well.

Unbalanced forces can be demonstrated if two people lift a couch or push a cabinet from the same side.
#balancedforces

#unbalancedforces
Copy the EQ’s

1. Give an example of Newton’s 1st law of motion from your daily life.

2. Give an example of Newton’s 2nd law of motion from your daily life.

3. Give an example of Newton’s 3rd law of motion from your daily life.

4. Create a situation where ALL of Newton’s laws could apply and would work together.
Newton’s 3 Laws of Motion

1st Law of Motion:
Things that are still stay still and things that are moving keep moving with a steady speed unless a force of some kind pushes or pulls on them.

2nd Law of Motion:
When a force acts (pushes or pulls) on an object, it changes the object’s speed or direction (in other words it makes the object accelerate). The bigger the force, the more the object accelerates.

3rd Law of Motion:
When a force acts on an object, there’s equal force (called a reaction) acting in the opposite direction. This law is sometimes written that “actions are equal and opposite.”
Newton’s 3 Laws of Motion

1st Law of Motion:
Things that are still stay still and things that are moving keep moving with a steady speed unless a force of some kind pushes or pulls on them.

Newton's First Law of Motion

An object at rest will remain at rest...

Unless acted on by an unbalanced force.

An object in motion will continue with constant speed and direction,…

…Unless acted on by an unbalanced force.
Mass and Inertia

• Newton’s 1st Law: The Law of Inertia
 • An object at rest will remain at rest, unless acted upon by an unbalanced force
 • An object in motion will continue moving, in the same direction, at the same speed, unless an unbalanced force acts on it.
Inertia

• Inertia is the tendency of objects to resist a change in motion.
• Example: seatbelts!
• REMEMBER: Brain Pop
INERTIA

Your truck has brakes... the massive hunk of stone doesn't.
Mass and Inertia

• If a car is going 50 kilometers per hour and it comes to a sudden stop, the people inside continue moving 50 kilometers per hour unless a force prevents their forward motion through the windshield.

Which is why WE wear SEATBELTS!!
Newton’s 3 Laws of Motion

2nd Law of Motion:
When a force acts (pushes or pulls) on an object, it changes the object’s speed or direction (in other words it makes the object accelerate).
The bigger the force, the more the object accelerates.

STRUGGLING WITH NEWTON’S SECOND LAW?

REMEMBER, YOUR "MA" IS A FORCE TO BE RECKONED WITH

The more force...
The more acceleration.

Force of girl accelerates the box.
The same force accelerates 2 boxes 1/2 as much.
3 boxes, 1/3 as much acceleration.
Mass

• The mass of an object affects its' inertia.
• Objects with more mass have more inertia than an object with a smaller mass.
 • It's harder to make a large object move or change the speed and direction of it when it's moving.
Another Example

- Train v. Car: Which will take longer to accelerate to 60 mph? Why?
Newton’s 3 Laws of Motion

3rd Law of Motion:
When a force acts on an object, there’s equal force (called a reaction) acting in the opposite direction. This law is sometimes written that “actions are equal and opposite.”
MAKE A CONNECTION
Friction and Gravity

- Two forces that can always affect the motion of an object are
 - Friction
 - Gravity
Friction and Gravity

• What is friction?
 • A force that opposes the motion of an object
 • It’s a “contact” force!
 • Occurs when an object in motion rubs against a surface.
 • The contact reduces the speed of the object and releases heat.
What affects the amount of friction?

- The force of the push/pull
 - The harder you push, the longer it’s going to take friction to stop the object.

- The roughness of the surface
 - The rougher the surface, the more friction.

- The weight of the object
 - The heavier the object, the more friction.
• What is gravity?
 • The force of attraction between all objects.

• The amount of gravity depends on two things
 • The objects' masses
 • The distance between the two objects
• Since the earth is so large, everything on it is attracted to it even if they’re not touching!

• Example: Throwing a ball.
 • You throw a ball up, but gravity pulls it back down to earth.
 • You can counteract gravity by catching the ball before it hits the ground (you provide the outside force!)
THE PHYSICS OF ANGRY BIRDS
#Newtonslaws
Closure:

ANSWER the EQ’s

1. Give an example of Newton’s 1st law of motion from your daily life.

2. Give an example of Newton’s 2nd law of motion from your daily life.

3. Give an example of Newton’s 3rd law of motion from your daily life.

4. Create a situation where ALL of Newton’s laws could apply and would work together.
DO: I will be able to explain the impact of forces on the world and the impact of forces on each other.

EQ’s
1. Explain how forces work against one another in your everyday life.
2. How are forces in nature related to the motion of objects?
3. How can forces be used to make objects move, change direction, or stop?
4. What are the similarities and differences between speed, velocity and acceleration?
An object moving in a circle is experiencing an acceleration. Even if moving around the perimeter of the circle with a constant speed, there is still a change in velocity and subsequently an acceleration. This acceleration is directed towards the center of the circle. And in accord with Newton's second law of motion, an object which experiences an acceleration must also be experiencing a net force. The direction of the net force is in the same direction as the acceleration. So for an object moving in a circle, there must be an inward force acting upon it in order to cause its inward acceleration. This is sometimes referred to as the centripetal force requirement. The word centripetal (not to be confused with centrifugal) means center seeking. For object's moving in circular motion, there is a net force acting towards the center which causes the object to seek the center.
1. Maximum potential energy at start of ride
2. Maximum kinetic energy just as car passes through bottom of a loop
3. Each loop is slightly lower than the previous one because the car loses energy as it goes
4. Centripetal force provided by track pushing against car allows it to "loop the loop"
5. Car has less energy at the end of the ride than at the start due to friction and air resistance
Average Speed

Average Speed = \(\frac{\text{total distance}}{\text{time}}\)

\[S = \frac{d}{t} \]

A car travels at an average speed of 50mph on the highway to Austin, which is 200 miles away. How long did it take to get there?

\[t = \frac{d}{s} \]

\[200\text{mi}/50\text{mph} = 4\text{ hours} \]

Net Force

Net force = (mass)(acceleration)

\[F = ma \]

Calculate the force on a 500kg object accelerating at 3m/s\(^2\)

\[F = m \times a \]

\[500\text{kg} \times 3\text{m/s}^2 = 1500\text{N} \]

Work

Work = (force)(distance)

\[W = Fd \]

The work done on an object is 300J. Calculate the distance of the object if a force of 40N was applied.

\[d = \frac{W}{f} \]

\[300\text{J}/40\text{N} = 75\text{m} \]
What is Velocity?

Velocity is a measure of the speed of an object AND the direction it is moving in space.

On the escalator, passengers are moving at the same constant speed, but they are moving in different directions.

Velocity can change even if speed is remaining constant (you just change direction)
Acceleration

- **Acceleration** is the rate of change of **velocity** (speed with direction)

- Acceleration may be **positive** or **negative**:
 - **Positive** – accelerates in the **direction it is moving (speeds up)**
 - Ex: riding your bike forward harder to speed up
 - **Negative** – accelerates in the opposite direction to its movement (slows down)
 - Ex: riding your bike and pushing the brake slows you down
MOTION GRAPHS

- **Distance vs. Time Graph:**
 - The graph plots distance (in miles) against time (in hours).
 - The motorcycle's distance increases linearly with time, indicating constant speed.

- **Speed vs. Time Graph:**
 - The graph plots speed (in m/s) against time (in seconds).
 - The speed changes in different segments:
 - **S** segment shows a constant high speed.
 - **T** segment shows a constant decrease in speed.
 - **U** segment shows a constant low speed.
 - **W** segment shows a constant increase in speed.

Both graphs illustrate the relationship between distance and speed over time, showing how motion can be represented graphically.
CALCULATING SPEED FORMULA

Distance = Speed x Time

Time = \frac{Distance}{Speed}

Speed = \frac{Distance}{Time}
Graphs represent speeds of objects. This graph shows a bus as it travels its route.

Between what points is the bus accelerating? _____ & _____
Between what points is the bus moving at a constant speed? _____ & _____
Between what points is the bus stopped? ___________
Between what points is the bus decelerating? ___________
Motion Graphs

Describing the motion of an object is occasionally hard to do with words. Sometimes graphs help make motion easier to picture, and therefore understand.

Remember:

- **Motion** is a change in position measured by distance and time.
- **Speed** tells us the rate at which an object moves.
- **Velocity** tells the speed and direction of a moving object.
- **Acceleration** tells us the rate speed or direction changes.

Plotting distance against time can tell you a lot about motion. Let's look at the axes:

- Time is always plotted on the X-axis (bottom of the graph). The further to the right on the axis, the longer the time from the start.
- Distance is plotted on the Y-axis (side of the graph). The higher up the graph, the further from the start.

If an object is **not moving**, a horizontal line is shown on a distance-time graph.

- Time is increasing to the right, but its distance does not change. It is not moving. We say it is **At Rest**.
If an object is moving at a constant speed, it means it has the same increase in distance in a given time:

Time is increasing to the right, and distance is increasing constantly with time. The object moves at a constant speed.

Constant speed is shown by straight lines on a graph.

Let's look at two moving objects:
Both of the lines in the graph show that each object moved the same distance, but the steeper dashed line got there before the other one:

A steeper line indicates a larger distance moved in a given time. In other words, higher speed.

Both lines are straight, so both speeds are constant.

Graphs that show acceleration look different from those that show constant speed:

The line on this graph is curving upwards. This shows an increase in speed, since the line is getting steeper:

In other words, in a given time, the distance the object moves is change (getting larger). It is accelerating.

Summary:
A distance-time graph tells us how far an object has moved with time.
• The steeper the graph, the faster the motion.
• A horizontal line means the object is not changing its position - it is not moving, it is at rest.
• A downward sloping line means the object is returning to the start.
SPEED-TIME GRAPHS

Speed-Time graphs are also called Velocity-Time graphs.

Speed-Time graphs look much like Distance-Time graphs. Be sure to read the labels! Time is plotted on the X-axis. Speed or velocity is plotted on the Y-axis.

A straight horizontal line on a speed-time graph means that speed is constant. It is not changing over time.

A straight line does not mean that the object is not moving!

This graph shows increasing speed.

The moving object is accelerating.

What about comparing two moving objects at the same time?

Both the dashed and solid line show increasing speed. Both lines reach the same top speed, but the solid one takes longer.

The dashed line shows a greater acceleration.

Summary:

A speed-time graph shows us how the speed of a moving object changes with time.

• The steeper the graph, the greater the acceleration.
• A horizontal line means the object is moving at a constant speed.
• A downward sloping line means the object is slowing down.
1. What has happened at A? __________
2. What has happened at B? __________
3. What has happened at C? __________
4. What has happened at D? __________
5. What has happened at E? __________
6. Calculate the speed at A? __________

7. What has happened at H? __________
8. What has happened at I? __________
9. What has happened at J? __________

10. What has happened at E? __________
11. What has happened at F? __________
12. What has happened at G? __________
13. Calculate the acceleration at E. __________

14. Calculate the distance travelled during the 10 second journey. (*hint* area under the line) __________
Balanced or Unbalanced?

• Complete the $\frac{1}{2}$ sheet on the back counter.

Remember procedures quiet room
Fill in the missing force to make each statement true. Show your work in the box provided.

1. The box will move to the right with a force of 50 N.

 Show your work

2. The box will not move.

 Show your work

Day 4

Write “B” for Balanced or “U” for Unbalanced for the following questions.

1. _____ A person jogging at a constant speed.
2. _____ A car accelerating at a green light.
3. _____ Pushing a lawnmower across the yard.
4. _____ A cookie sitting on a plate.
5. _____ Slowing down to stop at a red light.
6. _____ A bowling ball knocking over pins.
7. _____ A book sitting on a shelf.
8. _____ A linebacker tackling a running back.
9. _____ A person sitting on a chair.
10. _____ A plane flying at a constant speed.
Agenda

1. Lab Rotation Stations (10 min each)
 a. Matchbox Car racers (Newton’s Laws)
 b. Graph interpretation and story writing (distance and speed graphs)
 c. What I know choice boards
 d. Ms. Aiken’s choice

If you finish early check your IQ
Answer one of the EQ’s

1. Explain how forces work against one another in your everyday life?

2. How are forces in nature related to the motion of objects?

3. How can forces be used to make objects move, change direction, or stop?

4. What are the similarities and differences between speed, velocity and acceleration?
Tell me a story

• Using the graph explain what is occurring in reference to the subjects motion or speed.

Remember procedures quiet room
Agenda

1. Lab Rotation Stations (10 min each)
 a. Matchbox Car racers (Newton’s Laws)
 b. Graph interpretation and story writing (distance and speed graphs)
 c. What I know choice boards
 d. Ms. Aiken’s choice

If you finish early check your IQ