Date Bell

Benchmark Study Guide: Complete the following guide to help prepare for the benchmark on October 27.

This is not everything that may be on the test but it is a guide to help you study. Use your notebooks (warm ups, EQ's, and notes) and your feathers as tools to study with as well. 6. Place the terms atoms, compounds, elements, homogeneous mixture, heterogeneous mixture, matter,

1. Define atom, element, molecule, and compound.

Name

mixture, molecules, and pure substance in the chart below. (Read question 7 before filling in the chart.)

2. Place the above words in order from most complex to least complex. Explain your reasoning.

3. Draw a representation of each of the following.

S8P1b Pure Substances and Mixtures

4. Define pure substance, homogeneous mixture (solution) and heterogeneous mixture

5. Draw a representation of each of the following.

Pure Substance (Elements)

Pure Substance (Compounds)

Heterogeneous Mixture

7. In a separate color place an example of each to the right of each box.

S8Plc Phases of Matter

- 8. What state of matter has the highest energy? Lowest?
- 9. What state of matter has the highest density? Lowest?

10. Show the molecules of solids, liquids, and gases. Use arrows to show their relative energy level.

Solid Liquid Gas 11. To the side of each state of matter list if it has definite or indefinite shape and volume.

S8P1d Physical and Chemical Properties

- List 8 examples of physical properties.
 5.
 6.
 7.
 8.
- 13. List 3 examples of chemical changes. What happens to the molecules (or elements) after the change?
 1.
 2.
 3.
- 14. Why are volume, mass, and length not properties. Give an example.
- 15. Label these as Physical or Chemical changes. Explain why.

- 16. If an object with a mass of l2 g has a volume of 6.0 cm^3 . What is its density? (D = m/V)
- 17. The data to the right was found in a student's notebook. Calculate the density.

Mass of a metal	40.0 g
Volume of water <u>before</u> the sample was added	13.0 ml
Volume of water <u>after</u> the sample was added	18.0 ml
Volume of Object	
Density	

S8Ple Physical and Chemical Changes

- 18. What evidence suggests a chemical change? If those changes occur must there have been a chemical change?
- 19. Define precipitate, exothermic, and endothermic.
- 20. Below are two Erlenmeyer flasks. A liquid has been placed in both. Both have heat applied to them. In the first a physical change occurs and in the second a chemical change occurs. Draw a representation of this event.

Physical Change

Chemical Change

21. Explain the difference to the right of each flask.

S8P1g Conservation of Matter:

- 22. Define the Law of Conservation of Matter
- 23. What must be balanced in a reaction? Number of Atoms?

Number of Atoms? _____ Amount of Mass? _____ Number of Molecules? _____ Number of Substances? _____

- 24. When a spark is set off in a mixture of hydrogen gas and oxygen gas water is formed. If the reaction runs completely, all gas turns to water vapor, how many grams of water will you have if you begin with 4 grams of hydrogen and 32 grams of oxygen?
- 25. Complete the reaction: 36 grams of H₂O mix with pure Na to form 80 grams of NaOH and 2 grams of H₂. With how much Sodium must you start?

Determine whether the following statements are true or false. If the state is false, make the statement true by correcting the underlined word.

- 25. <u>Temperature</u> enables you to float a needle on water.
- 26. ____ During the freezing process particles <u>lose</u> energy.
- 27. <u>Sublimation</u> is the process that helps to form clouds.
- 28. ____ Particles that make up matter are in <u>constant</u> motion.
- 28. ____ A gas will <u>partially</u> fill its container.
- 29. ____ The particles remain constant when a liquid reaches its boiling point.
- 30. ____ The higher the temperature the <u>faster</u> particles move.
- 31. <u>Condensation</u> is the process by which particles move slowly enough for their attraction to bring them together to form a droplet of liquid.
- 32. ____ If a substance reacts with HCl, this would be an example of a physical property.
- 33. <u>Reactivity</u> is an example of a chemical property.
- 34. ____ When a compound is formed a <u>chemical reaction</u> has taken place.
- 35. <u>Acids</u> are slippery and have a bitter taste.
- 36. ____ Salt water is an example of a <u>chemical</u> change.
- 37. <u>Bases</u> have a sharp smell and sour taste.
- 38. ____ The pH level of an acid is between <u>0 and 7</u>.
- 39. ____ The pH level of a base is between <u>0 and 7</u>.
- 40. ____ Neutral substances have a pH of <u>0</u>.
- 41. ____ The ability to burn is a <u>chemical</u> property.
- 42. <u>A precipitate</u> is a solid that forms from a chemical reaction that takes place in a solution.
- 43. ____ The <u>boiling point</u> is the temperature a which some of the liquid begins to enter the gaseous state.
- 44. ____ Changes of states of matter are examples of <u>chemical</u> properties.
- 45. <u>Combustion reaction</u> is a chemical reaction that occurs when oxygen combines with another substance.

Identify each item as acidic or basic by writing A or B.

46. ____ ammonia 47. ____ shampoo

48. bleach

49. apples

51. vinegar

52. tomato

50. tea

Properties of Acids and Bases

- Acids
 - 🔶 turn blue litmus red
 - taste sour
 - Acids corrode metals
 - positively charged hydrogen ions (H⁺)
- Bases
 - 🔶 turn red litmus blue
 - 🔶 taste bitter
 - Negatively charged hydroxide ions (OH⁻)
 - Feel slippery
 - Most hand soaps and drain cleaners are bases
 - Strong bases are caustic

The pH Scale

Identify each change as chemical or physical by writing C or P.

- 53. _____ a burning log
- 54. ____ food being digested
- 55. ____ rust
- 56. _____a rotting pile of leaves
- 57. _____ a log chopped for firewood
- 58. ____ leaves falling from a tree
- 59. ____ crushing a graham cracker
- 60. ____ chocolate melting

Periodic Tab	e 🗆 Non Metals	Metals	Nobel Gases	
1	Alkali Metals	Metalloids	Rare Earth Met 8	
2	一人IKali Earth	Halogens	3 4 5 6 7	
olumns = Groups or	Families			
ows = Periods				
	_			
xplain the arra	ngement of Peri	odic Groups:		
Periodic Ta	ble			
i choule le				
1				
2				
3				
4				
5				
6				
7				
	+ + + +			
Sum = Periods	11111-0			
		of Don! - 1-		
xplain the	arrangement	or Periods:		
The table (sorts eleme	nte hv etc	mic number The	
number	fro	om left to	right.	
The lightes	st elements	are in the	e upper	ſ
of the tabl	e while the	heaviest	are in the bottom	
i uite tabi		manusl		

of the table.

1. What patterns can you notice in the periodic table?

2. How are the atomic numbers arranged?_____

3. How does reactivity correlate to elemental arrangement? _____

. What are the four main ways elements are arranged in the periodic table?

5. What are metalloids?

. Explain the difference in the atomic number and the atomic mass. BE specific.

Using your periodic table from your notebooks fill in the missing information below:

Element	Symbol	Atomic #	Protons	Neutrons	Electrons	Mass #
I.	Ag	47	2.	61	47	108
Potassium	3.	19	4.	20	19	39
5.	Sn	6 .	50	69	50	119
Fluorine	F	9	9	7.	8.	19
Krypton	9.	36	36	48	36	IO.

Using the periodic table fill in the missing information about each element. Then draw a Bohr model expressing the information that you found.

АТОМ	Molecule	Compound

Using the Bohr models below show how elements from different groups form bonds. Explain below each model why this pair works.

